Neutral Sphingomyelinase in Physiological and Measles Virus Induced T Cell Suppression

نویسندگان

  • Nora Mueller
  • Elita Avota
  • Lena Collenburg
  • Heike Grassmé
  • Sibylle Schneider-Schaulies
چکیده

T cell paralysis is a main feature of measles virus (MV) induced immunosuppression. MV contact mediated activation of sphingomyelinases was found to contribute to MV interference with T cell actin reorganization. The role of these enzymes in MV-induced inhibition of T cell activation remained equally undefined as their general role in regulating immune synapse (IS) activity which relies on spatiotemporal membrane patterning. Our study for the first time reveals that transient activation of the neutral sphingomyelinase 2 (NSM2) occurs in physiological co-stimulation of primary T cells where ceramide accumulation is confined to the lamellum (where also NSM2 can be detected) and excluded from IS areas of high actin turnover. Genetic ablation of the enzyme is associated with T cell hyper-responsiveness as revealed by actin dynamics, tyrosine phosphorylation, Ca2+-mobilization and expansion indicating that NSM2 acts to suppress overshooting T cell responses. In line with its suppressive activity, exaggerated, prolonged NSM2 activation as occurring in co-stimulated T cells following MV exposure was associated with aberrant compartmentalization of ceramides, loss of spreading responses, interference with accumulation of tyrosine phosphorylated protein species and expansion. Altogether, this study for the first time reveals a role of NSM2 in physiological T cell stimulation which is dampening and can be abused by a virus, which promotes enhanced and prolonged NSM2 activation to cause pathological T cell suppression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Buthionine Sulfoximine Inhibits Cytopathic Effects and Apoptosis Induced by Infection with AIK-HDC Strain of Measles Virus

Measles virus (MV) is a highly contagious agent which causes a major health problem in developing countries. We studied the effect of buthionine sulfoximine (BSO) on the replication of an AIK-HDC strain of MV and its induced apoptosis in Vero cell lines. Methods: In this study, toxicity of BSO on Vero cells was investigated first, resulted in determination of sub-lethal or non-toxic concentrati...

متن کامل

Construction of a Minigenome Rescue System for Measles Virus, AIK-c Strain

Background:In the recent decade, the reverse genetics method has been broadly used for rescue of negative-stranded RNA viruses from cDNA or viral minigenomes. This technique has been applied to study different steps in virus replication and virus-host interactions. Reverse genetics could also be implemented for design of new vaccines. The T7 RNA polymerase activity as well as virus (nucleocapsi...

متن کامل

Measles Virus Infects Human Dendritic Cells and Blocks Their Allostimulatory Properties for CD 4 1 T Cells

Measles causes a profound immune suppression which is responsible for the high morbidity and mortality induced by secondary infections. Dendritic cells (DC) are professional antigen-presenting cells required for initiation of primary immune responses. To determine whether infection of DC by measles virus (MV) may play a role in virus-induced suppression of cell-mediated immunity, we examined th...

متن کامل

A Role for Neutral Sphingomyelinase-mediated Ceramide Production in T Cell Receptor–induced Apoptosis and Mitogen-activated Protein Kinase–mediated Signal Transduction

Studying apoptosis induced by T cell receptor (TCR) cross-linking in the T cell hybridoma, 3DO, we found both neutral sphingomyelinase activation and production of ceramide upon receptor engagement. Pharmacological inhibition of ceramide production by the fungal toxin, fumonisin B1, impaired TCR-induced interleukin (IL)-2 production and programmed cell death. Addition of either exogenous cerami...

متن کامل

DC-SIGN Mediated Sphingomyelinase-Activation and Ceramide Generation Is Essential for Enhancement of Viral Uptake in Dendritic Cells

As pattern recognition receptor on dendritic cells (DCs), DC-SIGN binds carbohydrate structures on its pathogen ligands and essentially determines host pathogen interactions because it both skews T cell responses and enhances pathogen uptake for cis infection and/or T cell trans-infection. How these processes are initiated at the plasma membrane level is poorly understood. We now show that DC-S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014